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Significant improvements are made to a recent algorithm that finds molecular conforma- 
tions using distance geometry on nuclear magnetic resonance data. Weighting factors for the 
nearest approximation of the distance matrix to a data matrix are allowed to vary between 
iterations of the algorithm. These changes are proportional to the error of the distance between 
atoms in the configuration and the nuclear magnetic resonance data bounds. The weight 
changes increase the rate of convergence by an order of magnitude. Penalty functions are 
proposed to ensure the correct chirality. Numerical results for these modifications and subse- 
quent energy calculations using CHARMm are given for an analog of the heat stable (ST) 
enterotoxin peptide STh produced by E. coliin humans. 

1. I n t r o d u c t i o n  a n d  b a c k g r o u n d  

Distance geometry  is one method  used to determine the conformat ion  of  
molecules f rom nuclear magnetic resonance ( N M R )  data  and other  chemical infor- 
mation.  A review of  chemical distance geometry  by G. Crippen may  be found in 
ref. [1]. One m a y  view distance geometry  as a means of  sampling the space of  con- 
format ions  consistent with the distance constraints,  or as a means  of  generating 
chemical ly-reasonable structures (in terms of  bond  lengths and valence angles) for  
refinement by  energy calculations. Distance geometry  has made  significant contri-  
but ions to bo th  the general determinat ion of  molecular  conformat ion  [2] and phar-  
maceutical  design [3,4]. 

Our  distance geometry  algorithms use the following nota t ion  and ideas. The 
chemical and N M R  constraints yield a D a t a  Box defined by upper,  uij, and lower, 
l/j, bounds  so that  the distance, d/j between a t o m  i and a t o m j  in a molecule with n 
a toms should satisfy 
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O<lij<~dij<~uij, l <~i,j<~n. 

We use the bound smoothing algorithms developed by Havel, Crippen, and East- 
hope [5,6], incorporating basic geometry such as the triangle inequality to lower 
the upper bounds and raise the lower bounds. 

Given the smoothed Data Box, we randomly choose a set of numbers 6,j, called 
dissimilarities, which obey the bounds 

lij <~ ~ij <~ Uij, i,j = 1 , 2 , . . . n .  

We then seek n atoms (points) in three dimensions, denoted by xl, x2 , . . . ,  xn, to pro- 
duce a molecular conformation, and place the coordinates in a n by 3 matrix, X, 
whose distances d 0. ( X)  approximate 6ij. 

An initial starting configuration is found by using an alternating projection 
algorithm, MAP, (see [7,8]). The next step is to use the initial configuration and a 
gradient method to minimize a function so that the distances do.(X ) generated 
by the conformation X are near the dissimilarities 6/j picked in the Data Box. The 
loss function, related to the Stress function in multidimensional scaling, to be 
minimized is 

or(X) = 1 ~ ~ wij(dij(X) - 50) 2 . (1) 
i j 

If  the function or(X) is differentiable at X, then (see [9]) 

v o ( x )  = 2 ( v x -  B (x ) x ) .  

The elements of V are given by 

-wu, i C j ;  

Vi i= ~-~k¢i Wik, i = j .  

B(X)  = [bo(X)] is a function of X and is defined by 

-wij6ij/do.(X), i • j  and d , j (X)>0;  

bij(X) = O, i ¢ j  and du(X ) = 0; 

- ~--]~k¢ibik(X), i = j .  

In order to minimize (1) we use a spectral gradient algorithm, [10]. Its main 
advantage over other nonlinear gradient algorithms is that no line search is neces- 
sary. We denote the local minimum of or(X) (which is a function of the dissimilari- 
ties and the weights) by 

X = Ps([6/j], [w0.]). 

For a given conformation produced by the above algorithm, some of the dis- 
tances generated by the conformation will not lie in the Data Box. In order to apply 
alternating projections, we project the distance matrix onto the Data Box with the 
following algorithm: 
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Let X k be a three-dimensional conformation and [d/j(Xk)] be the distance matrix 
generated by X k. Then 

du(X k) if lo.<~dij(Xk)<~uij; 

6~= l O. if do.(Xk)<lij; 

uij if dij(xk)>uij. 

We denote this projection onto the Data Box by PB (xk). 
In the next section an alternating minimization algorithm that was used in [10] 

will be modified. 

ALTERNATING MINIMIZATION ALGORITHM 

• Let [4] be an initial set of dissimilarities in the Data Box. 

• While o~ >e  

• x k  = i -11) 

• [6i} 1 = PB(X k) 

• = ½E, Ejw (do.(x 

• End while 

The above algorithm is similar to alternating least-squares methods used in 
multidimensional scaling [11,12] and to alternating projections on convex sets as 
proposed by Cheney and Goldstein [13]. The goal is to find three-dimensional con- 
figurations whose distance matrices are in or near the Data Box. 

These algorithms and the modifications discussed in this paper will be applied 
to a peptide. It is known that peptides and proteins exhibit dynamical motion at 
room/body temperature, and while proteins fluctuate about a well defined confor- 
mation (characterized in terms of its secondary structure), peptides have an ensem- 
ble of different conformations of similar energy. X-ray structures of proteins are 
usually similar to those determined by NMR, except for surface groups interacting 
with the environment. However, for peptides, without an obvious "core", there 
may be major differences between the crystal and NMR structures. 

An investigation using NMR in DEO/H20 of the enterotoxin peptide analog 
STh(6-19) [14] with sequence Cys6-eys7-GluS-Leu9-eysll-Asn12-Pro13-Ala 14- 
Cys15-Thr16-GlylT-Cys18-Tyr19, identified two NOEs involving Asn12Ca-H. One 
of these was to Gly Ca-H and the other to Tyr CS-H. Neither NOE was stereospeci- 
fically assigned, and both appear relatively weak. Although the N M R  study [14] 
found about a 50 : 50 mixture of cis and trans isomers at the Asn12-Pro 13 peptide 
bond, the effect was local and only the trans form was considered in the simulations 
discussed here. 
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Prior to applying the non-linear optimization, we obtain mirror image struc- 
tures of mixed residue chiralities equally satisfying the constraints. Selection 
criteria are needed to determine which conformer should be chosen during optimi- 
zation in the above algorithms. Selection could be based on bound violations and, 
in the case of proteins, analysis of the fold in terms of secondary structure. The 
latter is unlikely to be an option for peptides, because even where elements of sec- 
ondary structure are reported [15] they tend to be [3 turns (as occur in the crystal 
structure of the ST analog mprS-STp(5 - 17)) [16]. A type I [3-turn could transpose to 
a type I' turn in a conformer of opposite handedness. In other words, a mixture of 
positive and negative ~b angles in a conformer with hydrogen bond-stabilized turns 
may be reasonable. A study of the 21 residue peptide endothelin [17] was able to 
distinguish between predicted handed conformers by identification of right- 
handed helicity in solution using circular dichroism. 

In this paper, since we have not developed explicit criteria for the selection of 
the backbone handedness, we fully optimize both mirror image structures. By 
developing new weight change strategies in this paper, we significantly increase the 
rate of convergence of a new distance geometry algorithm [10]. Additionally we 
impose constraints in the algorithm to enforce the correct chirality and also con- 
sider volume constraints to enforce the planarity of peptide bonds and aromatic 
rings. At the end of the section on the weight and chirality strategy we indicate the 
mathematical insight that our methods can give for solving the difficult conforma- 
tion problem using penalty terms on the chirality and the balance needed with the 
changing weights. In the final section, we have used the distance geometry algo- 
rithms described above to generate structures of STh(6-19) consistent with the 
NOE constraints. These structures are compared, before and after energy minimi- 
zation using C H A R M m  [18], with the crystal structure of the ST analog mpr 5- 
STp(5-17) [16]. 

2. Weight  changes and chirality 

2.1. UPDATING WEIGHTS 

One of the advantages of the spectral gradient algorithm is that the matrix V in 
the gradient of g is easy to compute from the weights. If one uses the majorization 
algorithm in [9], one needs to compute a generalized inverse of V. 

In our approach a weight matrix WB is first formed from the bounds. We found 
that 

1 
wu = 1 + 10(u 0. - l~) 

worked well to put more weight on the tightest bounds. Neither the constant 10 
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nor the linear term in (u,j - l/j) is crucial. However, using an exponent larger than 
two on this difference was not satisfactory. 

With this constant weight matrix it was necessary to run 1000 iterations of the 
alternating projection algorithm to find a configuration with bound violations less 
than 0.2 angstroms (A). However if one adjusts the weights every 10 iterations, so 
that additional weight is added proportional to the violations as follows, then com- 
parable accuracy can be achieved in 140 iterations. 

Every 10 iterations form a violation, or error, matrix E = [eij], (symmetric with 
zero diagonal) where 

eij = a(max(0, d O. - uij, lij - dij) . 

Then a new weight matrix is formed as 

WNEW ~--- WB n c E .  

We choose a as (iterations)/lO. A strategy that failed is to update the weight 
matrix by adding the violations to the previous update rather than to the original 
WB. 

2.2. CHIRALITY AND PLANARITY CONSTRAINTS 

The function to be minimized by the previous algorithm is now modified by the 
addition of penalty terms to enforce the correct chirality of the a carbon atoms and 
the planarity of the peptide bonds and the aromatic rings. 

Suppose we are given a chiral center (an a carbon). Let Pi, Pj, Pk, Pt be the four 
atoms bonded to the a carbon to form the tetrahedron. Let the coordinates of the 
points be denoted for example by Pi = (Xil, xi2, xi3). The oriented volume of the tet- 
rahedron is determined by one sixth of the following determinant: 

1 Xil Xi2 Xi3 

1 Xjl xj2 xj3 

1 xk~ xk2 xk3 

1 Xll X12 Xl3 

vijkt = det 

Havel [19] employs a simple quadratic penalty term to enforce the chirality 
which yields a zero value when the correct orientation is achieved. We propose a 
different chirality penalty term which will not have zero value (the value will be 
small), but will have a small gradient with the correct orientation and a large gradi- 
ent when the orientation is not correct. For each a carbon we propose the following 
sigrnodial penalty term: 

arctan(vukt) 
f = a ~ / 2  - ~ / 2  - ~ - e - + ~ ( v i y k x ) , ] "  

This penalty term will enforce a positive orientation (positive determinant) on the 
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volume of  the points in the order Pi, Pj, Pk, I t .  In case of the opposite chirality, 
use the same expression but simply switch two rows of the determinant  by reorder- 
ing the points, say Pj, Pi, Pk, P~. Since an interchange of  two rows of  the determi- 
nant  changes the sign of  the determinant,  this will impose the opposite chirality 
when inserted in the same penalty function. 

The parameter  e controls the growth range of the penalty function. For  example 
as e ~ 0, the penalty is approximately linear for negative values of  the determi- 
nant.  For  small positive e, it is almost linear from zero to a large negative value, and 
then approaches a large horizontal asymptote. We find e = 0.01 to be a satisfac- 
tory value. We use the scaling factor ~ to avoid overflow and we choose c~ = 1/n 2. 

In order to enforce planarity constraints, we force the above determinant  to be 
zero (or small). For  this purpose we propose the following penalty function: 

 :o(1 1) 
1 + ( vukl) 2: " 

The value of fi which has the effect of choosing the width of the "well" around 
zero which drives the function to zero is 1.5 in this paper. 

For  s e  {1,2, 3} a n d r e { l , . . .  ,n}, the entries of the gradient of  f and g a r e  given 
by 

and 

Of -c~(rc/2 + e) 1 OVUkt 
OXrs (=/2 + e + arctan(vijkt)) 2 1 + (V,jkt) 20x~s ' 

Og 2~2o~vijkt  Ovijkt 
Oxrs (1 + (fivijkl)2) 2 0Xr, " 

The term Ovgkt/Oxr, = 0 ifr  ¢ {i, j ,  k, l}. Otherwise 

a v i j k t  _ 

aXrs 

where 

1 if r = i ;  

crijkl = - -  1 if r = j ; 
1 if  r=k;  
1 if r = / .  

and v rs is the minor  determinant  obtained from vijkt by removing the row and col- 
umn  containing the term xrs. 

To enforce each chirality and planarity constraint a term corresponding t o f  or 
g is added to the original loss function c~. Then all the previous algorithms apply 
with ~ replaced by ~ plus penalty terms. The final conformation obtained by the 
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alternating projection algorithm should now have the correct chirality for the 
carbon atoms, very small deviations from the desired planar configurations, and 
distances which obey the bounds, with small error (assuming there exist solutions 
in the Data Box). 

Penalty methods in nonlinear optimization require care in the choice of the pen- 
alty function and the coefficients. Our results show a robust choice of parameters 
for the weight updates and penalty parameters yield good results for the entero- 
toxin peptide. An examination of the volume expression in the penalty terms shows 
that a moderate change in each distance in the tetrahedron can induce a large 
change in the volume. Hence if a structure is undergoing large changes in the initial 
conformations in the minimization algorithm, then very large changes in the pen- 
alty terms may cause overflow problems. There are two reasons this did not occur 
in this application. First, instead of the usual quadratic penalty used in other dis- 
tance geometry programs, we employ a function that grows more slowly and the 
penalty parameter was small. Second, this peptide was small and compact, due to 
the disulfide bridges, and no large distance changes ever occur. However, when we 
used the same protocol on the enterotoxin peptide, but with no disulfide bridges 
and no NOE constraints, we observed very large changes in the volumes and poor 
performance of the algorithm with the current parameters. Hence, for those pep- 
tides with similar compactness only small changes in the weight and chirality para- 
meters should be required to yield good results. 

However, for a molecule like 50-L-Alanine with no disulfide bridges and no 
NOE constraints, large distance changes occur during the minimization. In this 
case we find that to avoid overflow it is necessary to have both the weight change 
parameters and the chirality penalty term parameters very small initially and 
slowly increase these values as the minimization progresses. 

3. Protocols and numerical results 

All the distance geometry numerical experiments were run on IBM 3090-600J 
using the VS Fortran compiler. The numerical methods are applied to find confor- 
mations of the analog STh(6-19) of the peptide enterotoxin STh produced by 
E. coli in humans [20]. 

The Data Box is generated from the standard chemical bounds (generated in 
this case by DG-II [19], giving 160 atoms) and the NMR data from Gari6py et al. 
[14]. Two NOEs were identified involving Asn12Ca-H; one to GlylTCa-H and the 
other to Tyr19C&H. We imposed upper bound constraints in the distance geometry 
calculations between Asn12Ca-H and Tyr C~52-H of 4.5/k, and between Asn12Ca- 
H and Gly17Ca of 5.5 ~. The lower bounds were van der Waals radii. Because the 
directionality constraint of a pseudoatom representation [21] is missing in our cal- 
culations, the Gly17Ca-H atoms may end up a distance greater than the intended 
maximum of 4.5/k from Asn12Ca-H. 
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We generated two sets of data, one in which no constraints were placed on the 
disulfide bonds ($1), and a second set ($2) in which distances were constrained so 
that the torsion angle was restricted to 4-90 ° 4- 30 ° . In the initial starting conforma- 
tion the mirror image is obtained by changing the sign of the first coordinates of 
each point in the configuration. The resulting conformations with the same back- 
bone handedness as the crystal structure of the ST analog mpr 5-STp (5-17) [ 16] will 
be denoted by (X) and that of the opposite handedness by ( - X ) .  This procedure 
is repeated four times with different random dissimilarities to produce five struc- 
tures in each of the classes SI(X), SI(-X),  S2(X), S2(-X). We do not observe a 
change in the backbone handedness in the subsequent optimization. 

The stopping value in the spectral gradient algorithm was set to 10 -5. All confor- 
mations are found with 150 iterations of the alternating minimization algorithm. 
The root mean square difference (RMSD) in angstroms (A) for the backbone 
atoms (calculated using QUANTA 3.3, Molecular Simulations Inc.) between pairs 
of conformations in each of the four sets had the following ranges. RMSD between 
the five conformations from S1 (X) ranged between 1.26 and 1.76 A. Similarly the 
RMSD range for SI(-X) was 0.962-1.68 A; for S2(X) 1.24-1.66 A; and for 
S2(-X') 1.26-1.57 A. 

The data in table 1 indicates the goodness of the fit of our structures in the 
Data  Box. There were 533 positions in the Data Box with u O = lo., which we call 
tight bounds, out of a total of 25 440 bound restrictions. We record for each final 
configuration: the total number of bound violations (TBV) (the tight bounds are 
always slightly violated); the maximum bound violation (MBV) in angstroms; the 
average bound violation (AV) in angstroms times 10-4; the standard deviation of 
the bound violations (SD) in angstroms times 10 -3. We also record for the tight 
bounds: the maximal tight violation (MTV), the average tight violation (ATV) 
times 10 -2 and the standard tight deviation (STD) times 10 -2. 

All of the final conformations have very small bound violations. These viola- 
tions can be further reduced by more iterations, but we find for this example that 
150 iterations yields excellent results. For the conformers with opposite handed- 
ness ($1 (-X),  S2(-X)) to the crystal structure, at least one (usually both) NOE 
constraints is always violated. Those with the same handedness as the crystal struc- 
ture (SI(X), S2(X)) always fall within the bounds, with one exception (and for 
only one bound); conformer 3. 

The conformations obtained by our distance geometry algorithms were used as 
starting values for energy minimization. These 160 atom structures were imported 
into CHARMm22/QUANTA3.3  running on a Silicon Graphics 4D 70/GT Iris 
workstation. In an allatom representation with charged functional groups this 
gives 177 atoms and a total charge of +1.0. All interactions were included in the 
total energy and a distance dependent dielectric (RDIE 30, [22]) was used. Each 
structure was energy minimized using the methods of steepest descents (50 steps) 
and then adopted-basis Newton Raphson was used to convergence with a gradient 
tolerance 1E-5. 
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Table 1 
Bound violations for 20 conformers generated by distance geometry. 
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Conf. TBV MBV AV SD MTV ATV STD 

Bound violations for $1 ( X) 

1 668 0.090 4.76 4.08 0.089 1.60 1.57 
2 676 0.115 5.15 4.57 0.111 1.72 1.88 
3 672 0.112 5.32 4.76 0.112 1.77 1.97 
4 664 0.102 4.92 4.31 0.091 1.73 1.79 
5 660 0.122 5.05 4.64 0.114 1.69 1.93 

Bound viola tions fo r SI ( -  X) 

1- 674 0.113 4.58 4.13 0.113 1.49 1.72 
2- 663 0.097 4.18 3.68 0.089 1.34 1.47 
3- 672 0.138 5.07 4.56 0.138 1.72 1.98 
4- 657 0.138 5.96 5.24 0.126 2.14 2.2 
5- 676 0.117 5.48 4.59 0.117 1.86 1.85 

Bound violations for $2 ( X) 

1 667 0.103 4.74 4.19 0.095 1.56 1.59 
2 674 0.114 5.32 4.65 0.114 1.78 1.91 
3 676 0.126 5.33 4.76 0.126 1.77 1.96 
4 661 0.114 4.82 4.25 0.089 1.67 1.71 
5 678 0.121 5.41 4.95 0.119 1.81 2.16 

Bound violations for $2 ( -  X) 

1- 670 0.114 4.68 4.13 0.113 1.61 1.76 
2- 672 0.103 4.70 4.14 0.097 1.52 1.62 
3- 681 0.095 4.46 3.74 0.072 1.49 1.44 
4- 665 0.131 6.41 5.42 0.131 2.27 2.21 
5- 682 0.120 5.39 4.76 0.119 1.77 1.94 

A bug in the C H A R M m 2 2 / Q U A N T A  3.3 package in the NOE constraints 
code requires that we select a specific Gly Ca proton and we used Ca-H1. The Tyr 
C82-H was chosen as before. To be consistent with the distance geometry calcula- 
tions, we made the optimum distance of the 2 NOE constraints in the energy calcu- 
lations to be 4.5 A. The minimum interproton distance was set as 1.8 A and the 
maximum was 5/k.  A scale value, which is an empirical value biasing the NOE dis- 
tance constraints over other geometrical considerations, was set to 15. 

After energy minimization, for conformers with the same handedness as the crys- 
tal, RMSD to the crystal never decreases (see table 2). This might be expected since 
the NOE distance constraints are not satisfied in the mpr 5 STp(5-17) crystal struc- 
ture (protons added in QUANTA3.3). 
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Table 2 
Data summary of the 20 structures of STh (6-19) generated with 2 N O E  constra ints  [14] by distance 
geometry and energy minimization. 

Conf. Energy (kcal /mol)  R M S D  (A) Disulfide Number 
after EM before / after EM helicity H-bonds 

N O E  distances (A) 
(before) & after E M  

Asn-Gly / Asn-Tyr 

s~(x) 
1 -20 .76  2.34/2.57 + + - 3 (3.80)4.52/(2.93)3.73 
2 - 7 . 1 4  2.15/2.52 + + - 0 (4.76)4.51/(2.74)4.51 

3 -10 .95  1.91/2.54 - + + 1 (5.56)4.57/(3.42)4.00 
4 -18 .05  2.36/2.53 - - + 3 (3.95)4.55/(3.80)4.27 
5 -9 .63  2.26/2.80 + + + 2 (3.82)2.23/(2.49)4.52 

s~ (-x) 
1- -14 .04  5.39/4.77 - - + 1 (5.55)4.56/(1.08)4.60 
2- -17 .20  5.35/4.71 + + - 1 (5.55)4.58/(4.54)4.60 

3- -19 .47  5.42/4.65 + + + 3 (5.53)4.58/(4.2 8)4.29 
4- -22 .22  5.45/4.55 + - - 2 (5.43)4.36/(4.55)3.89 
5- -14 .65  5.57/4.34 + - + 2 (5.56)4.64/(4.54)4.08 

s2(x) 
1 -18 .97  2.29/2.43 + + - 3 (4.06)4.06/(2.91)4.27 

2 -10 .32  2.14/2.14 - + + 1 (4.72)2.77/(2.75)3.48 
3 -11 .10  2.00/2.57 - + - 3 (5.58)4.58/(3.32)3.80 
4 - 11.82 2.27/2.33 2 (4.32)3.08/(3.62)4.53 

5 -14 .14  2.21/2.87 + + - 2 (3.85)2.57/(3.05)4.58 

s2(-x) 
1- -18 .57  5.53/4.85 - + + 3 (5.56)4.58/(4.53)4.52 
2- -24 .95  5.41/4.88 4 (5.59)4.56/(4.52)4.62 
3- -19 .79  5.47/4.62 + + + 2 (5.54)4.59/(4.5 5)4.11 

4- -0 .91  5.40/4.74 + - + 3 (5.41)4.51/(4.55)4.55 
5- -13 .56  5.51/4.69 - + + 4 (5.56)4.30/(4.56)4.51 

Table 2 shows there were changes in NOE constraint distances, before and after 
energy minimization. In general, the Asn-Tyr interproton distance increases. This 
is probably a combination of specifying an optimum distance of 4.5 A andthe flex- 
ibility of the tyrosine at the C-terminus. 

The lowest energy conformer predicted in classes $1 and $2 has opposite handed- 
ness to the crystal. The torsion angles for this conformer are given in table 3. 

The energy of this conformer is -24.95 kcal/mol, its RMSD to the ST analog 
crystal structure is 4.88 A and it has 4 hydrogen bonds (by default QUANTA3.3 
criteria). All the hydrogen bonds are backbone-backbone and involve NH..CO 
pairings in residues 6-14, 15-13, 16-6 and 17-12. The prediction for the Cys 15 amide 
is in agreement with the NMR temperature coefficient studies [14], but the amides 
of residues 16 and 17 were said to be solvent exposed. 
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Table 3 
Torsion angles for the predicted lowest energy conformer of STh(6-19) satisfying the 2 NOE distance 
constraints. 

Residue Amino ~b ~u Xl X2 X3 
# acid 

6 Cys n /a  n /a  
7 Cys 61.2 -175.9 
8 Glu -77.3 - 175.8 -56.2 -59.6 
9 Leu 63.8 77.0 -52.6 174.1 

10 Cys 86.8 -29.1 
11 Cys 56.5 78.3 
12 Asn - 135.3 163.4 -72.3 -58.2 
13 Pro -43.3 129.7 
14 Ala 79.2 -84.9 66.0 
15 Cys - 156.3 109.9 
16 Thr 45.3 68.1 -175.5 -61.6 
17 Gly -89.1 36.8 
18 Cys -59.4 119.1 
19 Tyr -88.1 n /a  -62.0 -71.0 

-79.0 

Although 6 of the residues have positive ~b angles, the backbone angles of 
Leu 9, Cys 11 and Thr 16 occur in the stable left-handed helix region of the ~ / ~  map. 
Ala 14 has angles (79.2 °, -84.9 °) typical o fa  7 turn; the N M R  data [14] supports a 13 
turn over the region AAala-cys 18. This leaves only Cys 7 (61.2 °, -175.9 °) and Cys 10 
(86.8 °, -29.1 o) in unfavorable regions. We observe that residue chirality can be cor- 
rected during optimization without affecting the backbone, and these cysteines 
could have undergone chirality correction but be left with D-residue type angles. 

We performed an equivalent set of calculations (20 structures) without NOE dis- 
tance constraints and found a lower energy structure (energy -28.81 kcal/mol). 
Its torsion angles are listed in table 4. This conformer has the same handedness as 
the crystal structure (RMSD of 2.63 A) and is predicted to have 5 hydrogen bonds 
with the 4 backbone-backbone NH..CO residue pairings being 6-12, 8-14, 9-16 
and 14-17. The Glu 8 and Ala 14 predictions agree with specific N M R  findings [14], 
while none disagrees. This conformer has close agreement to the torsion angle 
values derived from experimental coupling constants [14]; Asn 12, Ala 14, Cys 18 and 
Tyr 19 all have ~b angles near - 150 °, in line with experiment. 

This structure has 2 (distorted) 13 turns. The first is a type VIb turn (optimum 
angles - 120 ° , 120 ° and -60  °, 0 °) around residues Leu9-Cys l°. The second is a dis- 
torted III '  turn (optimum angles 60 °, 30 ° and 60 °, 30 °) around CyslS-Thr 16. The lat- 
ter agrees with N M R  data proposing a 13 turn between Ala 14 and Cys 18. 

The lowest energy conformer in class S1 has the same disulfide helicity as the 
ST analog crystal structure (+ - - ) ,  otherwise there appears to be a random rela- 
tionshipbetween disulfide helicity and conformer energy. 
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Table 4 
Torsion angles for the predicted lowest energy conformer of STh(6-19) without NOE constraints. 

Residue Amino ¢ ~' XI X2 X3 
# acid 

6 Cys n /a  n / a  
7 Cys 67.2 113.6 
8 Glu 70.0 23.6 - 159.2 63.7 
9 Leu -147.6 147.6 -66.5 169.9 

10 Cys -82.2 3.3 
11 Cys -62.8 -47.7 
12 Asn - 155.6 82.3 -68.1 -76.9 
13 Pro -49.7 117.1 
14 Ala -153.6 165.4 58.5 
15 Cys 51.0 74.1 
16 Thr 53.9 38.9 -169.7 -63.9 
17 Gly 67.2 -107.8 
18 Cys - 148.2 44.3 
19 Tyr -160.4 n / a  54.8 -91.4 

84.6 

4. Conclusions 

By making weight changes to penalize bound violations within the algorithm 
we find conformations with small bound violations in approximately one tenth the 
number of iterations required if constant weights are used. Some variations of 
changing weights other than every ten iterations showed no significant improve- 
ment. The proposed chirality and volume penalty terms produced the correct 
values (small volume terms for planarity) in each conformation. The addition of 
the chirality penalty terms roughly doubled the time required to find the final con- 
formation. 

For the peptide example in this paper we always achieve a final conformation 
which has small bound violations and the correct chirality for every initial dissimi- 
larity with an average time of eight minutes and thirty seconds for each conforma- 
tion. The STh(6-19) peptide is relatively small compared to a protein like Bovine 
Pancreatic Trypsin Inhibitor (BPTI) for example, and only 2 NOE constraints were 
incorporated in the distance geometry and energy minimization calculations. How- 
ever, this study allows us to investigate aspects of protocols for peptide simulation 
and provides feedback for the further development of the algorithms outlined in 
this paper. 

One of these aspects is the selection/rejection of a conformer, during or after 
optimization. We found we were able to optimize both mirror image conformers 
each time, with little difference in their bounds violations except that conformers of 
opposite handedness to the crystal almost always slightly exceeded the NOE con- 
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straint bounds set (though the final distance was within 5 A). A selection/rejection 
option based on secondary structure (as can be used for proteins) requires better 
understanding ofpeptide conformational behavior in solution. 

We have also investigated the effect in distance geometry calculations of includ- 
ing a constraint on the disulfide X3 torsion angle. The inclusion reduces backbone 
conformational changes upon energy minimization. While the cystine Cct-Ca dis- 
tance is similar whether the torsion angle is near +90 ° or -90 °, the helicity may gen- 
erally be a determinant of agonist and antagonist peptide activity at its receptor. 
This study has application to other peptides, for example oxytocin (1 disulfide) and 
endothelin (2 disulfides). 

An explanation for the occurance of positive q~ angles (especially for Cys resi- 
dues) comes from our observation that the cystine chirality can be corrected (from 
D to L) in the optimization stage without changing the orientation of the back- 
bone. We find other residues in our simulations to have positive q5 angles and these 
are usually involved in [3 or 7 turns. We also find several examples of ~b/~b angles 
in the left-handed helix part of the map. Although they are not part of an extended 
helix, the disulfide bridges in the peptide may provide additional stabilization. 

Since the generated conformers satisfy the NOE distance constraints, while the 
crystal structure does not, we would expect (and find) lower RMSD between con- 
formers within $1 (X) and S2(X) classes, than from each to the crystal. 

We set an "optimum" distance for the NOE constraints of 4.5 A in the energy 
calculations (reflecting the observation from NMR data that they were weak), but 
allowed the proton-proton pairing to assume any value in the range 1.8 to 5 A. 
This protocol does not reproduce the time-averaged method for modeling NMR 
data in dynamics simulations [23], but does allow variation in inter-proton distance 
during energy minimization. 

The atomic representation, the form of the energy potential, and the minimiza- 
tion protocol will all influence the conformations obtained and their relative ener- 
gies. We used fully charged molecules and a distance-dependent dielectric (RDIE 
30, [22]) and find relatively few hydrogen bonds (range 0-4, see table 2); in most 
cases these are backbone to backbone. 

In conclusion, we have used distance geometry and energy minimization meth- 
ods (including two or zero NOE distance constraints) to predict structures of 
STh(6-19) having many of the conformational properties determined by NMR. 
The most energetically favorable conformers with constraints are opposite handed 
to the crystal structure of the ST analog. 
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